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Abstract: A three-body potential was included in a molecular dynamics simulation
program to calculate structural and thermodynamic properties of liquid and liquid-
like states of neon. In general the agreement with the experiment is within 1 %. For
high densities at 300 K the pressure shows three-body effects up to 3 %. Accounting
for these effects with the new three-body potential allows one to predict the pressure
at high densities not easily accessible to experiment. At very low temperatures
translational quantum effects, which are not treated adequately in the present
simulations, are sizeable.
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Introduction

As much interesting chemistry takes place in the liquid phase,
one goal of theoretical chemists has been to achieve a more
accurate description of liquid systems. Preferably, in order to
provide close correspondence with experiment, one would
like deviations between calculated and experimental proper-
ties to be less than 1 %. In order to reach this accuracy within
the constraints imposed by present computational facilities we
need to systematically determine the macroscopic consequen-
ces of various microscopic changes.

In the theory of fluids, computer simulations of noble gases
as test systems have provided valuable insights relevant to
more complex systems. Recent advances in liquid noble gas
molecular dynamics and Monte Carlo simulations have
focused on three key areas: the use of the best pair potential,
the inclusion of quantum corrections and the accommodation
of many-body effects.

Initial efforts involved replacement of simple model
potentials, in particular the Lennard-Jones potential, with
more precise pair potentials (see for example the Ar potential
of Woon[1]), which have been applied in molecular dynamics
simulations.[2] A systematic study of the influence of basis-set
size on ab initio potentials and simulated properties has been
undertaken for neon. A first potential NE 1[3] was constructed
based on ab initio total energy calculations with a basis set

consisting of 71 primitive Gaussians contracted to 45 func-
tions per atom, and a second one NE 2[4] with 112 primitives
contracted to 84 functions, both including correlation by
MP4(SDTQ) perturbation theory. The improvement of the
pair potential was found to have a large effect on pressure and
energies, particularly at high densities, a lesser but still
significant influence on derived thermodynamic properties
like molar heats, compressibilities, etc., but hardly any effect
on structure and transport properties.[4, 5]

The second question to be investigated is the importance of
quantum corrections for liquid noble gases. This is explored in
semiclassical simulations by Ermakova et al. ,[6] who showed
that virtually exact pair distribution functions are obtained by
including a quantum effective Wigner ± Kirkwood potential.

The last important correction should come from the
inclusion of many-body effects. A short discussion of its
relevance is given in the preceding paper[7] and more details
are found in recent reviews.[8, 9] In this publication we
investigate the importance of three-body effects on fluid
neon by combining the non-pair-additive part of the three-
body potential (see preceding paper) with two different pair
potentials. We also investigate which properties are sensitive
to three-body interactions (TBI) and when the latter are
negligible.

Computational Methods

The potential energy in the absence of an external field is given in
Equation (1) where ri is the vector pointing to atom i, the first summation is
over the pair potentials DE2 (two-body terms), the second over the non-
pair-additive parts of the three-body potential DDE3 (three-body terms,
hereafter referred to as non-additive TBI) and so on. In this work only two-
and three-body terms are included.
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The three-body potential obtained in the preceding paper was built into a
molecular dynamics program for simulations in the microcanonical (NVE)
ensemble, which employs the Verlet leap-frog algorithm for a cubic box
with periodic boundary conditions. More details about the original program
and the parameters applied in the simulations can be found in ref. [10].
To include the three-body terms changes in the program are mainly
necessary in the force routine in which not only forces, but also energies
and the virial coefficient are calculated. The conventional double loop over
the particles is nested with an additional third loop. In the double loop the
two-body terms are calculated as before and in the third embedded loop the
three-body terms are added. By using this scheme we are able to take
advantage of the fact that the non-additive TBI can be combined with
different pair potentials.
We have recalculated the thermodynamic properties determined by
Eggenberger et al.[5] within the pair potential approximation, this time
including three-body effects. The following definitions have been used
[Eqs. (2), (3) and (4)].
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The potential energy Epot consists of sums over the pair potential DE2 and
the nonadditive TBI DDE3 , which are both given in terms of interatomic
distances, and the corresponding long-range corrections ELRC (see below).
R is the universal gas constant, T the temperature and mi and vi are the mass
and the velocity of particle i, respectively. Sums are taken over N particles;
h. . .i is the time average. The pressure P [Eq. (5)]consists of the ideal gas
pressure and terms taking care of the intermolecular interactions through
the pair virial W2 and non-additive part of the three-body virial W3

[Eq. (6)], and the corresponding long-range corrections.
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The molar heat capacity CV,m [Eq. (7)] at constant volume contains the
fluctuation of the kinetic energy. Three-body interactions affect this
equation only indirectly, through the different dynamics of the particles in

the system. For the calculation of the thermal pressure coefficient gV

[Eq. (8)], the fluctuation of the temperature hdT2i and time averages of

CV,m� 3/2R{1ÿ 2/3N (RhTi)ÿ2 hdE2
kini}ÿ1 (7)

gV�CV,m1[2/3ÿN (RhTi2)ÿ1(RhdT2i� hTWiÿ hTihWi)] (8)

the virial W (the sum of W2 and W3) are needed. The virial contains the
nonadditive TBI. The adiabatic compressibility bS [Eq. (9)] includes the
fluctuation of the pressure, and the hypervirial c. For simplicity, and to save
computing time, the hypervirial (defined in ref. [11]) was treated only for
the pair potential. This is not exact; however the contribution would have
been small. The isothermal compressibility bT [Eq. (10)] contains the

(bS)ÿ1�ÿhdP2i(R1hTi)ÿ1N� 2/3R1hTi� hPi� 1hci (9)

(bT)ÿ1� (bS)ÿ1ÿhTig2
V(1CV,m)ÿ1 (10)

hypervirial through the adiabatic compressibility bS, hence it is also not
corrected exactly. This latter statement is also true for all the following
properties: CP,m the molar heat capacity at constant pressure [Eq. (11)], c
the speed of sound [Eq. (12)] and m the differential Joule ± Thompson
coefficient [Eq. (13)].

CP,m�CV,mbT/bS (11)

c� (1bS)ÿ1/2 (12)

m� (bTgVhTiÿ 1)/(1CV,m) (13)

Use of a Verlet neighbour list, and truncation of both the pair potential and
the nonadditive part of the three-body potential, leads to three important
radii. The list radius rlist is chosen to be 3.1 s, s being 283.8 pm for NE 1 and
279.2 pm for NE 2. For the two-body and three-body terms of the potential
the cutoff radii were set at rcut2� 2.7 s and rcut3� 1.34 s, respectively. rcut3 has
to be smaller than half of rcut2 , as a result of the way we have implemented
the loops and the long-range corrections. A nonadditive DDE3 contribution
is included in the third loop if all distances are within rcut2 and at least two of
them within rcut3 . Similarly, within the third loop a subroutine is called that
calculates the pressure P3� 1�W3 due to the three-body interactions.
The truncation of the potentials requires a correction. Long-range
corrections ELRC,2 and PLRC,2 for the pair potential are described in detail
in ref. [11]. We also have to add long-range corrections for the truncation of
the nonadditive part of the three-body potential. The energy correction is
given by Equation (14).[12]

ELRC,3� 1/6N2
A13
� � �

g(r1 ,r2 ,r3)DDE3 dr1dr2dr3 (14)

NA is Avogadro�s constant, 1 the particle density, and g(r1,r2 ,r3) the trimer
distribution function. The integration is performed over the space
complementary to the one accounted for in the loop. Applying the
Kirkwood superposition approximation, g(r1,r2 ,r3) can be replaced by the
product of the three pair distribution functions g(r12)g(r13)g(r23) and the
integration variables transformed to the interatomic distances r12, r13 , and
r23, by the relation shown in Equation (15);[13] thus Equation (14) turns into
Equation (16). For practical reasons we use two interatomic distances and
the angle between them as variables together with the Jacobian r12r13 sinV/
r23 for the long-range energy correction [Eq. (17)].

dr1dr2dr3� 8p2/1� r12r13r23dr12dr13dr23 (15)
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The integration limits were chosen to include only those trimers which are
not treated in the force routine. The limits for the first two integrations are
rcut3 and infinity, for the last integration zero and p. Note again that rcut3
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Abstract in German: Zur Berechnung von Struktur und
thermodynamischen Eigenschaften von flüssigem und super-
kritischem Neon wurde ein Drei-Teilchen-Potential in ein
Moleküldynamik-Programm integriert. Die berechneten Ei-
genschaften stimmen mit einer Abweichung innerhalb von ca.
1 % mit den experimentellen überein. Für hohe Dichten zeigt
der Druck bei 300 K einen Drei-Teilchen-Anteil von bis zu
3 %. Durch Berücksichtigung dieses Anteils im neuen Drei-
Teilchen-Potential können Drücke bei hohen Dichten voraus-
gesagt werden, die dem Experiment kaum zugänglich sind. Die
Quantelung der Translationsbewegung der Atome bei sehr
tiefen Temperaturen wird in den vorliegenden Simulationen
nicht berücksichtigt.
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should be less than half of rcut2 , otherwise some cases will be handled
neither in the force loop nor in the TBI long-range subroutine. The
integration is performed numerically by a three-dimensional Gaussian
quadrature.[14] The corresponding correction for the pressure is given in
Equation (18). The three-body long-range corrections are added at the end
of the calculations, when the pair distribution function is available from the
simulation.

PLRC,3�ÿ 4/9p
2N2

A13
� � �

g(r12)g(r13)g(r23) P3(r12 ,r13 ,V)r2
12r2

13 sinVdr12dr13dV (18)

Results and Discussion

In the following we refer to the older potential given by
Eggenberger et al.[3] as NE 1 and the newer one as NE 2.[4]

NE 1/TBI is the older potential including the three-body
interaction as calculated in the preceding paper, whereas
NE 2/TBI is the newer pair potential NE 2 combined with the
nonadditive three-body interaction calculated with the small-
er basis set NE 1 in the preceding paper. This latter approach
may be questioned. It has been pointed out in the literature,[15]

however, that the nonadditive part of the three-body inter-
action shows much faster convergence with the basis set size
than the pair interaction.

Before discussing the present results in detail, let us
consider an interpretation of the deviations from experiments
in our previous simulations. Simulations with the pair
potential NE 2 yielded very accurate properties at low
pressures (note that in this paper a pressure of 100 MPa�
1000 bar is called a low pressure, as it is at the lower end of the
pressures investigated; this should not be confused with a gas
at low pressure). For example, in the supercritical state at
300 K and 100 MPa the pressure calculated with the pair
potential NE 2 is 1.8 MPa too large (4.3 MPa for NE 1).
However, at greater pressures the deviations increase, reach-
ing 39 MPa at 1000 MPa (98 MPa for NE 1). These results do
not suggest that the dispersive interactions need an improve-
ment, but rather that the repulsive part of the potential might
not be fully adequate. The two pair potentials NE 1 and NE 2
are very similar in the long-range part. One main improve-
ment of NE 2 is the depth of the potential near and at the
equilibrium distance (108.4 mEh for NE 1 and 120.6 mEh for
NE 2; the experimental depth is estimated to be 130.6�
4.6 mEh). The well depth together with other pair properties
(for a more detailed discussion see ref. [4]) gives us an
estimate of the difference between NE 2 and the true pair
potential that is slightly smaller than the difference between
NE 1 and NE 2. We will refer to this in the discussion below. A
second important change is the shift of the repulsive wall to
smaller distances (Figure 1). At high pressures this will be
more important and we can try to give a qualitative
interpretation in terms of a hard-sphere model.

For a hard-sphere model the Percus ± Yevick equations can
be solved analytically[16] and the pressure given as a function
of density. It can be shown that the difference in pressure
between systems of smaller and larger spheres is small at low
density; however, the deviation increases sharply as the
density is raised. This behaviour parallels that observed in our
MD simulations, that is, increased deviation between calcu-
lated and experimental pressure as the density is raised, and

Figure 1. The repulsive part of the ab initio potentials NE 1 and NE 2
applied in the simulations.

significantly greater deviation for NE 1 than for NE 2 (see
Figure 3). We can consider the NE 1 model atoms as larger
spheres and the NE 2 model atoms as smaller spheres, as a
result of the shift in the repulsive wall described above. Note
that estimated experimental diameters correspond to yet
smaller spheres. The hard-sphere results indicate that the
improvement in calculated pressure from NE 1 to NE 2 can be
attributed almost entirely to the improvement in the repulsive
part of the potential. For the three body interactions to result
in further improvement, they would need to modify the short-
range repulsive part of the potential, rather than the long-
range behaviour. Inclusion of Axilrod ± Teller interactions, for
example, is unlikely to produce an improvement in this case.
Figure 3 of the preceding paper shows for an isosceles triangle
that DDE3 is indeed very negative at a distance s, thus leading
on average to smaller spheres, which in turn will reduce the
pressure, as we will see. At very short distances it becomes
positive again, but this has no influence at the temperatures
studied. The long-range part of the nonadditive TBI is
negligible compared with the repulsive part. It should be
pointed out that this might be a result of the limited order of
perturbation we used in our correlation calculations; how-
ever, in view of the excellent agreement of all bulk properties
calculated at low pressure, there is no reason to assume that a
more accurate attractive part should play a significant role.

In summary, the previous deviations of simulated from
experimental results were a result of defects in the repulsive
part of the potential, rather than in the attractive part. We will
now discuss the present results and give more detailed
arguments.

Structure : For a discussion of the structure we use the radial
distribution function g. It has been shown previously[6] that the
improvement of the potential from NE 1 to NE 2 has very little
influence on g. At temperatures of 26 and 36 K the first
maximum was identical within statistical error, while at 42 K it
increased by 3 % from NE 1 to NE 2. It was estimated[4] that
the deviation of NE 2 from the experimental pair potential is
smaller than the deviation of NE 1 from NE 2. Hence, an
improvement of the potential should produce no significant
change in g. Furthermore, Ermakova et al.[6] were able to
show by means of a quantum effective potential that the
quantum-corrected g functions are virtually identical with the
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experimental functions. Hence, we did not expect much
change due to the three-body interaction. This was indeed the
case and in a graph of the g function one can hardly see any
change. However, if we take a close look at the first peak of
the g function as given in Figure 2, we see a small shift of

Figure 2. An enlarged portion of the g pair distribution function at 36 K
showing the shift of the first peak to smaller distances with improved levels
of calculation.

about 2 ± 3 pm towards smaller radii between NE 1 and NE 2,
and an even smaller shift of about 0.5 pm in the same
direction, if we include the three-body interaction. A similar
small shift is observed in the supercritical state at 298 K and
1000 MPa. This is in agreement with the preceding discussion
about the potentials shown in Figure 1.

We conclude that for rare gases quantum effects at low
temperatures are important, whereas three-body effects and
the quality of the pair potential are of minor importance. If
this could be generalised for the structure of molecular liquids
it would be of great help for the calculation of accurate solvent
effects as performed by several authors for infrared absorp-
tion,[17] nuclear quadrupole couplings,[18±22] and NMR
shifts.[23, 24]

Pressure : As mentioned above and shown in Table 1 and
Figure 3,[25] the pressure simulated with pair potentials
deviates increasingly from experimental values at higher
densities. If we think in terms of hard spheres with too large

Figure 3. Deviations between calculated and experimental pressure versus
the density at a temperature of 298 K. The points correspond to pressures
of 100, 400, 700 and 1000 MPa, respectively.

radii, we expect such deviations as those found in all our
previous simulations. The smaller spheres of NE 2 improve
the results more than the inclusion of three-body interactions
in simulations with NE 1. This could be an indication that
many deviations from experiment attributed in the literature
to many-body effects could be the result of inadequate pair
potentials. However, there is also an improvement due
to the inclusion of the three-body interaction, although it
has only about half the size of the improvement be-
tween NE 1 and NE 2. Comparison of the improvements of
the pressure in Figure 3 when three-body interactions are in-
cluded with NE 1 or NE 2 shows that they are nearly
additive.

At a first glance Figure 3 gives the impression that the
present calculations on the NE 2/TBI level are virtually exact.
However, we must be aware that a better pair potential could
yield smaller pressures which deviate slightly more (with a
negative sign) from experiment than the present results.
Nevertheless, the results will be within typical chemical
accuracy and we have shown here that three-body interactions
are quite small, yielding a contribution of only about 3 % even
at a pressure of 1000 MPa. The situation could be different for
molecular liquids at ambient temperatures, as in those cases
the attractive part of the potential might play a more
important role.
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Table 1. Energy U and pressure P[a] calculated on different levels and compared with the experimental values Uexp and Pexp.

T 1 PNE1 PNE1/TBI PNE2 PNE2/TBI Pexp UNE1 UNE1/TBI UNE2 UNE2/TBI Uexp
[b]

(K) (mol mÿ3) (MPa) (MPa) (MPa) (MPa) (MPa) (Jmolÿ1) (J molÿ1) (Jmolÿ1) (J molÿ1) (J molÿ1)

298 26472 104.4 103.9 101.8 101.5 100 3477 3461 3433 3424 3372
298 54411 432.7 426.7 413.1 405.5 400 3575 3546 3456 3422 (3289)
298 66998 764.6 747.8 723.0 707.4 700 3944 3882 3746 3688
298 75373 1098.0 1068.2 1039.1 1006.6 1000 4377 4283 4115 4025

100 50864 118.3 114.8 107.0 103.5 100 331 309 255 234
200 34650 108.0 106.8 103.8 102.8 100 2033 2025 1981 1977
298 26472 104.4 103.9 101.8 101.5 100 3477 3461 3433 3424 3372
400 21527 103.6 103.3 101.8 101.4 100 4864 4860 4833 4830 4745
500 18178 102.6 102.6 101.4 101.2 100 6192 6189 6166 6163

28 63532 37.4 29.5 17.1 9.3 20 ÿ 1212 ÿ 1249 ÿ 1307 ÿ 1343

[a] The equilibrium temperatures of the simulations usually deviate slightly from the exact temperatures given in the table. As pressure and energy are very
sensitive, the values from the simulations were interpolated to correspond exactly to the temperatures given in the first column. The errors caused by the
interpolation, the statistics and the simulation parameters are estimated to be about 0.5 ± 1% for pressures and 0.5 % for energies. [b] Experimental values
interpolated and extrapolated (in parentheses) from ref. [25].
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Figure 4 shows the pressures at 100 MPa as a function of
temperature. To understand the behaviour we should recog-
nise the noticeable increase of the densities at lower temper-
atures, reaching a value not far from liquid densities at 100 K.
At higher temperatures and, hence, low densities (i.e., on the

Figure 4. Deviations between calculated and experimental pressure versus
the temperature at an experimental pressure of 100 MPa. The densities
change from 18178 to 50864 mol mÿ3 (see Table 1).

right side of the graph) the three-body interaction contributes
little. Therefore, the remaining error (although close to the
technical error, see below) probably results from the pair
potential. Indeed, the gap between NE 2 and the experimental
pressure is slightly smaller than between NE 1 and NE 2, as is
the potential depth of the pair potential. This suggests that the
remaining errors result from the inaccuracies of the pair
potential NE 2.

The statistical error of the simulated pressure is typically
less than 0.2 % with an additional error of about 0.1 % that
stems from the temperature correction. An error owing to the
cutoff radii, the step size and the limited number of atoms is
estimated from simulations at 1000 MPa to be about 0.5 %,
which results in an overall technical error of the simulated
pressures of 0.5 to 1 %.

The last line of Table 1 needs a further comment. It is a
phase point in the liquid state at very low temperature. Hence,
translational quantum effects will be extremely important. An
estimate of its size by perturbation theory was given by
Eggenberger et al.,[4] who obtained a pressure of 33.6 MPa as
compared with 17.1 MPa without corrections for the same
state point with NE 2 with the inclusion of quantum correc-
tions. If, similarly, a factor of two is applied to the new result, a
reasonable pressure of about 20 MPa results.

The pressure is probably the property most sensitive to
errors in the intermolecular interactions. Hence, the present
results with a typical deviation of about 1 % from experiment,
at temperatures that are not too low, are very satisfying.

Internal energy : The internal energies are given in Table 1.
There are only few experimental values available for compar-
ison. The deviations are less than 2 %, that is, chemical
accuracy is roughly attained for energies as well. Going from
NE 1 to NE 2 the energies are lowered by about 40 J molÿ1 at
low pressures and up to about 250 J molÿ1 at 1000 MPa. A
rough estimate of what is expected from the change in the

potential can be given as follows: The first shell in liquid neon
has roughly 10 atoms corresponding to 5 pair interactions. The
NE 2 potential is about 10 mEh (25 Jmolÿ1) less than NE 1 in
the equilibrium region, suggesting a lowering of the energy of
the order of 5� 25� 125 J molÿ1 in agreement with the above
numbers. A further lowering of the energies by a similar
amount caused by a more accurate pair potential would
improve the present energies and make them virtually exact,
if three-body interactions are included. On inclusion of three-
body interactions the change in energy is again only less than
half of the change observed between the two pair potentials.
The largest three-body interaction (at 1000 MPa) is only
slightly more than 2 %. A comparison of the columns UNE1

with UNE2 in Table 1 on the one hand and UNE2 with UNE2/TBI on
the other shows that the three-particle interaction is smaller
than the improvement in the two-particle interaction. This
means that a further improvement in the pair potential would
have a sizeable effect. An estimate, as carried out for the
pressure, yields an overall technical error that is due to
simulation parameters and so on of about 0.5 % for the
energy.

As for the pressure, a very accurate energy is only obtained
with an excellent pair potential. To use a very accurate pair
potential is more important than to include three-body
interactions, although at very high pressures the latter gain
significance.

Derived thermodynamic properties : As previously report-
ed,[5, 26] derived thermodynamic properties such as the thermal
pressure coefficient, the adiabatic and isothermal compressi-
bility, the thermal expansion coefficient, the Joule ± Thomp-
son coefficient, the speed of sound, and the molar heats at
constant volume and pressure have been calculated with
reasonable accuracy. Therefore, we did not expect much
improvement as a result of many-body interactions. This was
confirmed in the present simulations, in which all values were
the same as those obtained with NE 2 within statistical errors.
Hence, we will only discuss the various properties briefly
without giving an additional table with the values. Because
translational quantum effects have unknown influences on the
liquid phase point with temperature 28 K, we exclude this
point from the discussion.

Comparison with experimental values, where available,
shows that whereas the adiabatic compressibility is accurate
within 1 to 2 %, the isothermal compressibility deviates by up
to 5 %. Although this deviation is more or less within
statistical error, the calculated values are systematically too
low. Regarding the change from NE 1 to NE 2 simulated
values,[5] it is likely that an improved pair potential would
result in very accurate values. A similar statement applies to
the Joule ± Thompson coefficient. The isothermal compressi-
bility was also computed as a derivative from a fit of the
volume as a function of the pressure. Within the error limit the
results are the same as with the statistical equations. For the
thermal pressure and expansion coefficients no experimental
values were found.

The speed of sound is typically 1 ± 2 % too high, which is
slightly more than statistical error. Again the improvement
found going from NE 1 to NE 2 suggests that an improved pair
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potential would lead to excellent agreement with experi-
ment.[5] The molar heats at constant volume and at constant
pressure are, within statistical error of about 1 %, in agree-
ment with the experimental values.

Generally speaking, we expect very accurate derived
thermodynamic properties from highly accurate pair poten-
tials without including three-body interactions.

Conclusions

Simulations were performed with two different pair potentials
combined with the nonadditive part of the three-body
interaction described in the preceding paper. All potentials
were obtained from quantum-chemical ab initio calculations.
The results showed that three-body interactions have little
influence on structure and derived thermodynamic properties,
but decrease the pressure and the energy at high densities by a
few percent. The important three-body interaction at these
high densities is repulsive, that is, not of Axilrod ± Teller type.
The deviations from experiment of all properties at low
temperatures lead us to the conclusion that quantum effects
are always important. For the structure this was shown
directly by the application of quantum effective potentials,[6]

leading to excellent agreement with experiment. The quality
of the pair potential plays a crucial role for energy and
pressure, has some importance for the derived thermody-
namic properties, but is not so critical for the structure.

Here and in the previous work it was shown for the first
time that it is possible to simulate a fluid (neon) with chemical
accuracy over a wide pressure and temperature range
completely ab initio without the use of any empirical
parameters. Low temperatures are excluded, since transla-
tional quantum effects become important there and cannot be
treated adequately in the present classical simulations.

Acknowledgement : This investigation is part of Project 2000-045269.95
supported by the Schweizerischer Nationalfonds zur Förderung der
Wissenschaften. We thank the staff of the university computer centre in
Basel for their assistance and the Swiss HLR-Rat for a grant of computer
time on the national supercomputer.

Received: June 26, 1997 [F739]

[1] D. E. Woon, Chem. Phys. Lett. 1993, 204, 29 ± 35.
[2] E. Ermakova, J. Solca, H. Huber, M. Welker, J. Chem. Phys. 1995, 102,

4942 ± 4951.
[3] R. Eggenberger, S. Gerber, H. Huber, D. Searles, Chem. Phys. 1991,

156, 395 ± 401.
[4] R. Eggenberger, S. Gerber, H. Huber, M. Welker, Mol. Phys. 1994, 82,

689 ± 699.
[5] R. Eggenberger, H. Huber, M. Welker, Chem. Phys. 1994, 187, 317 ±

327.
[6] E. Ermakova, J. Solca, H. Huber, D. Marx, Chem. Phys. Lett. 1995,

246, 204 ± 208.
[7] E. Ermakova, J. Solca, G. Steinebrunner, H. Huber, Chem. Eur. J.

1998, 4, 377 ± 382.
[8] M. J. Elrod, R. J. Saykally, Chem. Rev. 1994, 94, 1975 ± 1997.
[9] W. J. Meath, M. Koulis, J. Mol. Struct. (Theochem) 1991, 226,

1 ± 37.
[10] R. Eggenberger, S. Gerber, H. Huber, D. Searles, M. Welker, J. Phys.

Chem. 1993, 97, 1980 ± 1984.
[11] M. P. Allen, D. J. Tildesley, Computer Simulation of Liquids, Clar-

endon, Oxford, 1987.
[12] H. Eyring, D. Henderson, W. Jost, Physical Chemistry, Academic

Press, New York, 1971.
[13] G. C. Maitland, M. Rigby, E. B. Smith, W. A. Wakeham, Intermolec-

ular Forces, Clarendon, Oxford, 1981.
[14] W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numer-

ical Recipes (FORTRAN Version), Cambridge University Press,
Cambridge, 1986.

[15] F.-M. Tao, Chem. Phys. Lett. 1994, 227, 401 ± 404.
[16] D. A. McQuarrie, Statistical Mechanics, Harper Collins, New York,

1976.
[17] K. Hermansson, S. Knuts, J. Lindgren, J. Chem. Phys. 1991, 95, 7486 ±

7496.
[18] R. Eggenberger, S. Gerber, H. Huber, D. Searles, M. Welker, J. Chem.

Phys. 1992, 97, 5898 ± 5904.
[19] R. Eggenberger, S. Gerber, H. Huber, D. Searles, M. Welker, Mol.

Phys. 1993, 80, 1177 ± 1182.
[20] R. Eggenberger, S. Gerber, H. Huber, D. Searles, M. Welker, J.

Comput. Chem. 1993, 14, 1553 ± 1560.
[21] A. Laaksonen, R. E. Wasylishen, Z. Naturforsch. A 1995, 50,

137 ± 144.
[22] R. Ludwig, F. Weinhold, T. C. Farra, J. Chem. Phys. 1995, 103, 6941 ±

6950.
[23] D. B. Chesnut, B. E. Rusiloski, J. Mol. Struct. (Theochem) 1994, 314,

19 ± 30.
[24] V. G. Malkin, O. L. Malkina, G. Steinebrunner, H. Huber, Chem. Eur.

J. 1996, 2, 452 ± 457.
[25] A. Michels, T. Wassenaar, G. J. Wolkers, Physica 1965, 31,

237 ± 250.
[26] R. Eggenberger, S. Gerber, H. Huber, D. Searles, M. Welker, J. Chem.

Phys. 1993, 99, 9163 ± 9169.

� WILEY-VCH Verlag GmbH, D-69451 Weinheim, 1998 0947-6539/98/0403-0388 $ 17.50+.50/0 Chem. Eur. J. 1998, 4, No. 3388


